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ABSTRACT Likelihood ratio (LR) tests are provided for
the three alternatives to DNA identity: exciusion, coincidence,
and kinship. The coincidence test uses the radius of coalescence
to conserve the observed trequency of single band phenotypes.
Genotype probabilities under kinship are derived for mating
groups, specified relatives, and structured populations; and
unbiased estimates of the genetic parameters are provided. The
LR is made robust to gene frequency errors by specifying the
mean matching probability, and the tolerable loss of informa-
tion this entails is determed by LR theory. This straightor-
ward application of the seminal work of Jerzy Neyman and
Sewall Wright strongly supports the use ofLRs and kinship for
presentation of DNA evidence by expert witnesses and com-
mittees.

Neyman and Pearson (1) demonstrated that likelihood ratios
(LRs) are the optimal basis for statistical decisions, whether
or not there is an hypothesis about prior probabilities (1-3).
Therefore LRs have Bayesian appeal but are not Bayesian.
They have rich statistical properties and give a measure of
divergence between hypotheses in information theory. Dis-
cussion ofLRs by the National Research Council Committee
on DNA Technology in Forensic Science (4) has fatal errors,
leading to the "ceiling principle" that is neither a ceiling nor
a principle (5-8).

Despite their advantages, LRs are not generally used for
DNA identification. Molecular biologists developed an alter-
native procedure called match/binning whereby a match is
declared by one criterion and its probability is calculated for
a different one, using a cautious approach designed to favor
the defendant (9). This has drawn criticism from statisticians
because it can lead to ambiguity when two bands fall close
together in different bins or far apart in the same bin, its
properties are difficult to establish, and the superiority ofLRs
has been demonstrated. Adoption of LRs for DNA identifi-
cation (with different but consistent LRs for exclusion,
coincidence, and kinship) will increase efficiency and reli-
ability, provide a rigorous solution to the search for conser-
vative presentation of evidence, disarm criticism, and be
more comprehensible to the court (10, 11). Advances in
molecular techniques, especially recognition of discrete al-
leles, will alter error densities but not the fundamental logic.

Theory

DNA evidence Ej derived from locus j is the union of two
pieces ofevidence EJ, and EJ contributed by individuals s and
c called suspect (defendant) and culprit (an evidential or
criminal sample). The population k of the culprit and the
relationship R between them are relevant but usually un-
known. Different hypotheses about k, R, the error density,
and algorithms to estimate gene frequencies lead to different

LRs. An expert witness can testify about these hypotheses
and the support for each, but he should not usurp the
responsibility of the court to determine the most credible
hypothesis.
Let Ho be a null hypothesis about the relationship of c and

s and H1 be an alternative hypothesis specifying a closer
relationship. With k and R implicit, the general LR for thejth
locus is

P(EiC, EIslHl) P(E{cIEis, HI)
PP(EJ, EisjHO) P(EclEs, Ho) Ill

since the marginal probability P(EJ,) is independent of k and
R. It is convenient to take the logarithm of odds (lod) zj = in
Ai so that Z = IZj is the evidence against Ho in favor of H1,
the LR is A = eZ, and the probability of A 2A underHo is less
than 1/A for A > 1. Additivity (independence) of unlinked
loci is justified theoretically because relationship does not
induce linkage disequilibrium and may be confirmed empir-
ically as zero correlation of lods. The divergence between H1
and Ho is defined as E1(Z) - EO(Z), where Ei(Z) is the mean
lod when Hi is true (3). Three tests are defined against null
hypotheses of exclusion, coincidence, and kinship.

In the exclusion test, Ho denotes exclusion because of a
different genotype, and H1 is inclusion because of the same
genotype. It is the LR analog of the match step in match/
binning and is designed to protect the suspect against false
inclusion, leaving to other tests the distinction among coin-
cidence, kinship, and identity. It is adapted to the current
standard of representing alleles by fragment length instead of
sequence and would be unnecessary for an error-free deter-
mination of sequence or fragment length. Since the distribu-
tions under both hypotheses are continuous, there is no need
to define bins or estimate genotype frequencies. Consider the
jth locus at which the suspect has two fragments, the natural
logarithms of which are xi < xi. The corresponding loga-
rithmic lengths in the culprit are yA < y4. We specify
logarithms to stabilize the variance when the standard devi-
ation of replicates is roughly proportional to fragment size.
Then the error density depends only on the distribution of
samples from the same individual, f(uj, vj), where uj = yj -
xi and vj = yJ - x4 and orthogonal functions are Si = ui +
vj, Dj = uj - vj (12). Since the vectors symbolized by x and
y may be interchanged, E(u) = E(v) = E(S) = E(D) = 0 and
E(SD) = E(u2) - E(v2) 0, but E(uv) > 0 if there is
uncorrected band shifting and

-s= E(S2) - E(u2) + E(v2) + 2E(uv)

a2 = E(D2) E(u2) + E(v2) - 2E(uv).

Being functions of four variables, each symmetrical and
roughly normal, the distributions of S and D are nearly

Abbreviations: lod, logarithm of odds; LR, likelihood ratio.
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normal. Therefore the error density for replicates of the same
genotype is

1 2~~~~~~
yP(E|!EJE, H1) = 1 e-(Sj/2Ms1+Ij/2-(Dj1) dydy. [2J

Under Ho the distribution has approximately the same form
with greater variances od, and oD2 , although deviation from
normality will be more pronounced if fragment size is mul-
timodal (13). The differential elements cancel and so

zj=:ln(OSjODjo/aSjlaD,)
+ j[Sj(11/o-S /CrS~) + D] (1/o - 1/cD,)]. [31

Substructure or other relationship between s and c is not
considered in the exclusion test, since exclusion makes
relationship irrelevant while inclusion leads to tests that
distinguish among identity, coincidence, and kinship. The
forensic population that gives the smallest lod provides the
most conservative admissible test, but this source of varia-
tion is minor. If the LR is large (say >1000), the suspect
cannot be excluded and coincidence should be tested. (At this
point a Bayesian statistician would introduce prior probabil-
ities and costs of different wrong decisions, but this is
optional and controversial).

In the coincidence test Ho denotes coincidence (a different
random individual with the same phenotype) and therefore
specifies a discrete variable that is conveniently represented
by bins, each of which would contain only one sequence or
fragment length in an error-free assay. Random mating (pan-
mixia) is assumed. H1 denotes the same individual, with the
error density integrated over the bin. There are many ways
to perform integration. Berry et aL (13) applied normal kernel
smoothing, but choice of the smoothing parameter is arbi-
trary. Devlin et aL (14) assumed a model for size of flanking
regions and number of repeats, which is necessarily approx-
imate and not testable on current evidence. Spline or other
interpolation might be used. Morton et al. (15) proposed 4dy
= dy4 = 2*j, where *j is the radius ofcoalescence for thejth
locus, defined so that bins of size 2*j give the same estimate
of homozygosity hj as the observed frequency haj of individ-
uals with single bands. They estimated Oj by fitting hj = 1 -
ecjw, where c is a constant specific for race and locus, and
taking A' = -ln(1 - hj)/cj. The resultant bins are treated as
alleles. Thus if y falls in the rth bin with frequency qr, the
probability of genotype GrGs (with locus j implicit) is

p(ECIE HO)
q2 if r

4P(EcIE3, H0) = j{2qrqs if r # s.

In our experience X is approximately equal to three replicate
standard deviations, and therefore the integral of Eq. 2
between y +± i is nearly 1. Under these conditions, the
coincidence LR is the reciprocal of the panmictic matching
probability. The coincidence test is designed to protect the
suspect against a chance match but does not protect against
a related culprit. It allows greater choice than the exclusion
test, since k may be varied, integration may be performed in
different ways, and these genotype-specific matching prob-
abilities may be replaced by their mean value (16, 17):

P(EcIEs, Ho) = 2(jq~r)2 -qr. [51
This loses some information [measured as Eo(Z)] but makes
the calculation extremely robust with respect to sampling
errors and choice of population. Unbiased estimates of the
moments are given by

E{fnr(n, - 1)} Yn' - N2r2
N(N-1) N(N-1)

E{Eln,(nr - 1)(nfr - 2)} In2'l - 3jn2 + 2N
= N(N - 1)(N - 2) N(N-1)(N - 2)

E{4E{jr(nr - 1)(nr - 2)(nr - 3)}
N(N - 1)(N - 2)(N- 3)

T.n,4- 6y,n,3+ lly n2 - 6N
N(N- 1)(N- 2)(N- 3)

[6]

where n, is the observed number in the rth bin of the chosen
population andN = Xn, (18). Although small samples do not
give reliable estimates of bin frequencies, Eq. 6 avoids the
error ofattributing bias to substructure (19). Ifthe LR is large
(say >1000), coincidence is rejected and kinship should be
tested.
The kinship test answers the most persistent and trouble-

some issue raised by the defense: might a match be due to
close or remote relationship between suspect and culprit,
where remote relationship may be called substructure? A
valid answer makes it unnecessary to partition a large foren-
sic sample into small subsamples or to investigate foreign
populations. H1 denotes the same individual as in the coin-
cidence test and Ho denotes a particular relationship. A large
lod favors identity of suspect and culprit, even against the
alternative of a related culprit. Naturally the information
(measured as divergence) is less than that for exclusion and
coincidence tests, and strong evidence may require testing of
additional loci or specific relatives. However, ifno relative is
under suspicion, a moderately large LR (say >100) provides
strong evidence (not proof) of identity.

Several kinship models may be entertained (20). In the
progenitive (parent-child) model, one allele is identical by
descent and so

P(EclEs, Ho) = {qrfr=sP(ECI,, H) = (qr + q,)/2 if r # s. en

As in Eq. 5 we may replace genotype-specific matching
probabilities by their mean value (16, 17):

P(EcIEs, Ho) = Eqr. [8]

These results are the special case qy = Y4 of regular (nonin-
bred) unilineal relatives with kinship v for which

P(EjEs Ho) f4vpqr + (1 - 4v)q, if r = s~A~CILS, 0) 2qv(qr + qs) + (1 - 4q)(2q~q,) if r # s

(21). The mean matching probability is

P(EcIE3, Ho) = 4qpyqr2 + (1- 447)[2(2qr2)2 - 2q4]

2Yq,2(Yq,' + 19).

[91

[10]

In the affinal model the culprit is related as closely to the
suspect as a spouse would be (20, 22). This allows forpossible
inbreeding of either individual. Then up to terms in a2,

qr2+ 5qr(1 - qr)a if r= s

P(EIEc, HO) =2qqr1+qa+q, - Sqrq, 1 ifr#s, [ll
qrqs

where a is the mean inbreeding coefficient in the population
to which both belong. There is considerable evidence about
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values of a in different populations (20). Higher order terms
are negligible and depend on the unknown distribution of
gene frequencies among mating groups. The mean matching
probability is

P(EIE,, Ho) = 2( q')2 2q + 2422q2 + Eq3
+ 3Xqr 6(Eqr)2]

%1 2E 2qr(Eqr2 + 2a). [12]

Sibs are the most common bilineal relatives. If they are not
inbred the matching probability (21, 23) is

= f(1 + 2qr+q 2)/4ifr= s

P(EjiEs, HO) [13]

with mean (16)

P(EcIE3, Ho) = [1 + 2Eqr2 + 2( qr)2 - 2q4]/4. [14]

This is a special case of regular (noninbred) bilineal relatives
with probability cp of havingp genes identical by descent and
conditional matching probability tp, where

q2 if r = s

{2qrqs if r # s

qr if r = s

t= {(qr + q,)/2 if r # s

t= 1

to = 2(jq2)2
tj = Xqr [15]

t2= 1

P(EcIE,, Ho) = Ecptp
P(ECjEs, Ho) = Zcptp

=c2/2 +c1/4.

There is considerable variation among LRs for the kinship
test, depending largely on the model and magnitude of
kinship (Table 1). The appropriate choice rests with the
court, not the expert witness, who should, however, be well
versed in the evidence on human population structure and its
implications for the kinship test.

Examples

A trial ofalternative algorithms requires a sample ofreplicate
tests, a forensic data base of different individuals, and pairs
representing suspect and culprit. The first two are provided
by the Federal Bureau ofInvestigation for five loci typed with
Hae III (9) and by Lifecodes Corporation for four loci typed
with Pst I (24). We are grateful to Bruce Budowle and Ivan
Balazs for these data bases and helpful criticism. For each
forensic sample, replicates were generated by the same
protocol on different gels, usually on different days and in
different laboratories as part of a blind quality control. This
material was analyzed by the 4N6 program, which performs
calculations for LRs, kinship, and ancillary tests (15). Sus-
pect and culprit pairs were generated for each locus by
cyclical permutation within a specified population (and
within individuals for replicates) after shuffling into random
order. Thus N informative observations generate N pairs in
which each observation appears once as a suspect and once
as a culprit.

In Table 2 the locus with the smallest amount of informa-
tion in the coincidence test is D17S79, which may have the
highest frequency of null alleles by Hae I1 (25), leading to a
high estimate ofthe radius of coalescence and therefore large
bins. This loses information but does not simulate kinship.
For a given probe, slightly more information is extracted by
the 4-base cutter Hae III than by the 6-base cutter Pst I,

which produces larger fragments. Since relative errors are to
a first approximation uniform, large fragments tend to have
large absolute errors, reflected by greater bin size measured
in base pairs and correspondingly higher random matching
probabilities.

Information to exclude a suspect is greater than for the
coincidence test, since two bands far apart in the same bin
favor exclusion. Despite error in fragment lengths, an inno-
cent suspect is assured of exclusion if enough tests are
performed. Formally stated, the probability that a random
suspect is not excluded is less than 1 - HIJ1 - MO, where Mi
is the probability ofa coincidental match at thejth locus (20).
The empirical matching probability is the frequency of ex-
clusion LRs >1 in cyclical pairs. Even by a moderate battery
of tests on unlinked loci, the probability that a random
suspect is not excluded is less than 10-18 (Table 2).
The efficiency of the coincidence test as the ratio of

expected lods is 0.89 when the mean matching probability is
used. The efficiency rises to 0.95 for the kinship test. Many
courts will consider the loss of information a reasonable price
to pay for protecting the suspect against sampling errors and
choice of an inappropriate population.
The kinship test offers even greater protection against

substructure or other relationship between suspect and cul-
prit. We have illustrated this by the unilineal model with p =

Table 1. Coefficients of identity for regular relatives

Kinship Identity coefficients Degree of
Relationship (°) C2 Cl co kinship (k)

Identical twins 1/2 1 0 0 0
Sibs 1/4 1/4 1/2 1/4 1
Double first cousins 1/8 1/16 6/16 9/16 2
Parent-child 1/4 0 1 0 1
Grandparent-grandchild (= uncle-niece 1/8 0 1/2 1/2 2
= half sibs)

First cousins (= great grandparent-great 1/16 0 1/4 3/4 3
grandchild = great uncle-niece)

First cousins once removed 1/32 0 1/8 7/8 4
Second cousins 1/64 0 1/16 15/16 5
Equal bilineal (1/2)k+l 4q,2 4(p(l - 2p) (1 - 2q)2 k
Unilineal (l/2)k+l 0 4 1 - 4V k

Medical Sciences: Collins and Morton
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Table 2. Expected lods for LR tests (common logarithms, pooled
ethnic groups)

Kinship,
Coincidence, Eo(Z),

Exclusion Eo(Z) v= 0.05
Locus Ref. E1(Z) Eo(Z) Eq. 4 Eq. 5 Eq. 9 Eq. 10
D2S44 9 3.18 -1836 2.30 2.13 1.79 1.73
D1S7 9 2.95 -936 2.49 2.35 1.92 1.88
D17S79 9 2.55 -420 1.42 1.23 1.16 1.08
D4S139 9 2.61 -473 2.23 2.05 1.74 1.68
D10S28 9 3.36* -1079* 2.17 2.06 1.72 1.69
D2S44 24 2.58 -467 1.90 1.65 1.50 1.40
D17S79 24 2.36 -274 1.74 1.46 1.37 1.26
D14S13 24 * -1589* 2.29 1.88 1.71 1.55
D18S27 24 2.49 -358 1.54 1.30 1.24 1.13

Total - 18.08 16.11 14.15 13.40

*Few replicates for D10S28 and no replicates for D14S13. Means of
standard deviations from same reference were substituted. This
affects only the exclusion test.

0.05, an absurdly high value for most forensic populations but
appropriate under high levels of inbreeding. The efficiency
declines to 78% for specific matching probabilities and to 83%
for mean matching probabilities, but the decline is much less
for more typical values of (p (15). The lost information can of
course be recovered by testing more loci, and the court must
decide on a reasonable balance between cost and credibility.

Discussion

Inevitably statistical methods for DNA identification lag
behind advances in molecular biology, especially in the initial
phases. Data bases are relatively small and not well designed,
and there has been little quality control of calculations. Given
the superiority of LRs over other statistics, what are the
objections and complications?
The exclusion test depends on the densities of fragment

lengths in replicates (error) and the general population. Some
information is lost when the allelic distribution is neglected
by considering only differences in fragment size, but the
number of loci tested should be large enough to make this
negligible. Error is minimized ifthe fragment lengths are well
separated as in short tandem repeats or if a standard is run in
every lane with differential labeling. Manual protocols use
fewer standards for each gel, permitting band shifting and
adding an extra source of variation to small fragments. Small
PCR fragments are less subject to degradation than large
restriction fragment length polymorphism fragments. Mea-
surement error can be eliminated by procedures that resolve
1-bp differences, and then the logarithmic transformation of
fragment lengths becomes unnecessary and the exclusion test
becomes categorical.
The coincidence test will always be subject to dispute

about the relevant population and sampling errors. Dispute is
minimized by using mean matching probabilities and a large
sample of the major ethnic group to which the suspect
belongs: as Eq. 1 shows, this is a courtesy to the defendant
and not a logical inference. Clearly the LR to reject coinci-
dence must be set so high (by testing a sufficient number of
loci) that the choice of sample is not critical. Usually three
loci provide adequate evidence, although a few more are
desirable. Any question about the propriety of multiplying
locus-matching probabilities should be referred to the kinship
test.
The distinction between coincidence and kinship is blurred

on the hypothesis of random sampling from a subdivided
population so that suspect and culprit are both inbred to
extent a, but there is no kinship between them. This has been

approached through the 2p rule that falsifies the frequency of
homozygotes without modifying heterozygote frequencies
(26), a substitute for kinship that makes the calculations no
longer probabilities, invalidates LRs, and at usual levels of
inbreeding is opposite to the biological effect it attempts to
model. The mean matching probability is

P(EjIEs, Ho) = 2 [q' + qr(1 - qr)a]2 + E [2qrqs(1- a)J2
r r<s

[16]

- 2( q2)2] + a2[Y4qr2 - 2yqr -qr + 2(yqr)2]
Hypervariable loci come close to the ideal system, which has
XqM = 1/nm-i, where m = 1, 2, . . . and n = 1/1q2 is the
effective number of alleles. Assuming this, P (2 - 2a +
na2)/n2, which declines as a goes from 0 to 1/n and increases
monotonically thereafter. Not until a reaches 2/n is the
matching probability as great as under random mating. Since
values of a in excess of 2/n occur only with strong prefer-
ential consanguineous mating, the assumption of a = 0 in the
coincidence test exaggerates the matching probability and is
therefore favorable to the suspect without fudging homozy-
gote frequencies by the 2p rule, which is inappropriate since
kinship between suspect and culprit increases matching prob-
abilities for heterozygotes as well as homozygotes. This
completes the argument that kinship should not be incorpo-
rated into the coincidence test and that the 2p rule should not
be used in any LR test.
There is an interesting distinction between the effect of B,

the number of individuals that must include the culprit, and
b, the number of individuals of known phenotype that may
include the culprit. A crime aboard ship or on a desert island
invokes B, which does not enter into the LR (27). Trawling
a forensic data base for matches on the hypothesis of recid-
ivism invokes b, the number of individuals trawled. Suppose
m of these fail the exclusion test on the basis of information
in the data base, and further investigation (including failure of
exclusion on additional loci) identifies one of these as the
suspect. Let Cd be the matching probability based on the data
base and C, be the matching probability based on loci tested
subsequently. Then an appropriatejoint matching probability
in the coincidence test is [1 - (1 - Cd)b]Cs. This Bonferroni
correction is almost b times as favorable to the suspect as the
uncorrected matching probability CdC,, but again the number
of loci tested should make the difference negligible.

Jeffreys et al. (28) have suggested an extension of multi-
locus tests that uses oligonucleotides within a variable num-
ber of tandem repeats locus. This avoids some serious
technical problems with multilocus restriction fragment
length polymorphisms, but unless haplotypes are resolved,
the weight of evidence (using empirical mean matching
probabilities) is less than for tests based on alleles or haplo-
types at multiple, unlinked loci.
The kinship test inherits all controversy about population

structure. Since kinship does not cause linkage disequilib-
rium, matching probabilities are multiplicative over loci,
providing the correct gene frequencies, kinship, and sampling
model are used. The more emphasis there is on kinship, the
less reason there is to question the multiplicative rule over
loci, although methods are available to incorporate depen-
dence whether caused by sampling of relatives or replicates
or not (ref. 20; Eq. 15). With rare exceptions, it is plausible
to assume that kin of an individual belong to his ethnic group,
and so the choice of gene frequencies is limited by the
forensic samples to which the suspect or culprit might
reasonably be assigned (including the total data base). After
long periods of neglect, the affinal model has come into favor
to represent an isolate (local population or unusual ethnic

Proc. Natl. Acad. Sci. USA 91 (1994)

2 4 3 + 4= 2(lqr)2 -Yaqr + 2a[Eqr Eqr



Proc. NatL. Acad. Sci. USA 91 (1994) 6011

group) for which there is no large sample. Often there will be
no reason to assume that suspect and culprit come from the
same local population unless the suspect is guilty. However,
kinship is an appealing hypothesis for the defense, and an
expert witness should make appropriate calculations. Yasuda
(22) derived probabilities for mates assuming that terms in a'3
are negligible, where a is the mean inbreeding coefficient,
and Morton (ref. 20; Eq. 11) followed him in deriving con-
ditional probabilities. This is justified even if a is as great as
0.05, which is exceptional. Moreover, the signs of coeffi-
cients of a2 and a3 depend on the unknown distribution of
gene frequencies among (abstract) mating groups, which in
turn depends on the vector of evolutionary sizes, the matrix
of migration rates, and historical factors. Real populations
are mixtures of local populations with different sizes and
kinship. A beta distribution is plausible only for identical
replicates under an island model (29), and its use may well be
less accurate than the linear approximation although the
effect in practice is trivial (30).
The most general criticism of kinship models is that they

rest on the assumption of random drift among local popula-
tions within a region, but this objection is not likely to be
raised either by advocates of neutral mutation or by others
who recognize that migration dominates selection over re-
gions that are large compared with neighborhood size (29).
Genotype probabilities are functions of gene frequencies and
kinship only in expectation, which does not apply exactly to
any particular subpopulation. The same objections could be
made to the Hardy-Weinberg law as a special case: gametes
do not unite at random but through mating pairs with variable
numbers of offspring, which give expected genotype proba-
bilities only in the limit for large populations. The appeal of
kinship theory is that no more accurate representation of
genotype frequencies has been found. Given a sufficient
number of tested loci, it is unlikely that different calculations
based on sound theory and evidence would ever lead to
different inferences, either in an ethnic group or a local
population.

Forensic use ofDNA has passed through three stages. The
first used multilocus probes, which have high power, but
present technical and statistical problems that restrict their
use (31). The second stage used single locus probes with
eclectic matching rules (32). The third phase applied the
ceiling principle, which has proven indefensible, since pos-
sible relationship between suspect and culprit introduces
kinship coefficients that cannot be modeled by falsifying gene
frequencies (4). We are now in the fourth stage, in which the
PCR is adopted, errors in fragments lengths can be elimi-
nated, nonexpressed loci are chosen to show little variation
among populations, matching probabilities are replaced by
the richer armamentarium of LRs, the relevant hypotheses
are recognized to be multiple (exclusion, coincidence, and
kinship), and possible relationship between suspect and
culprit is appropriately modeled.
A computer program for forensic use ofDNA must address

several aspects not considered here but incorporated in the
4N6 program. They include estimating kinship among foren-
sic populations, testing for Hardy-Weinberg proportions,
making pairwise disequilibrium tests, simulating relation-
ship, matching a suspect against the data base, and making a
case report on a suspect-culprit pair. The relevant theory has
been published (20), and further applications will be made.
However, progress in this field would be accelerated if its
practitioners adopted the approach of laboratory workers,
who welcome, instead of resisting, technical advances and
quality control. Since population genetic theory is not con-
troversial, future effort should be directed to analysis of
forensic populations and presentation of results in ways that
are at once most powerfil, most reliable, and most readily
comprehended.

LR theory was established in 1928 and essentially complete
by 1959 (1-3). Kinship theory was introduced in 1921 (33) and
matured by 1968 (22). The pioneers, Jerzy Neyman and
Sewall Wright, were members of the National Academy, and
the importance of their work is generally recognized. Nev-
ertheless, these advances made when America led the world
in statistics and population genetics are neglected by Amer-
ican courts and the National Research Council Committee on
DNA Technology in Forensic Science, either through igno-
rance or in the belief that it is better to disregard the darkness
than to light a candle. British courts accept LRs and kinship,
which the London Metropolitan Police use routinely (albeit
imperfectly) for presentation of evidence (34). American law
must also be reconciled to science.

Note Added In Proof. Eq. 16 has recently been derived independently
and discussed in detail (35).
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